SYNERGI MELLEM BIOGAS-OPGRADERING OG SOEC

Christian Dannesboe

Center for Biorefinery Technologies

AU BIOGAS PLANT FOULUM

Biogas produced from manure Production of 100 Nm3/h

Biogas is 40% CO₂.

(Only 60% of the biogas has value)

BIOGAS AS SOURCE OF CO₂

The digestion of organic waste produce biogas. A gas rich in CO_2 .

Biogas

Component	Amount
CH ₄	60%
CO ₂	40%
H ₂ S	~1000ppm
Water	saturated

Pure methane

Component	Amount
CH ₄	100%
CO ₂	0%
H ₂ S	0 ppm
Water	nill

Natural gas

Component	Amount
CH ₄	97,2% (min)
CO ₂	2,5% (max)
H ₂ S	5 ppm (max)
Water	nill

"UPGRADING" OF BIOGAS

Current upgrading technology primarily based on CO₂ scrubbing.

Greenlane Biogas - bio gas upgrading plant / Operating principle

http://www.sarlin.com/en/Energy-Technology/Biogas-purification-and-upgrading-plants

https://www.americanbiogascouncil.org/biogasProcessing/amineScrubber.html

UPGRADING USING HYDROGEN

Hydrogen added directly to biogas reactor

- Biological process
- Low temperature

Hydrogen used in post treatment of the biogas

- Catalytic process
- High temperature

Both solutions are currently being tested on a pilot level

CATALYTIC UPGRADING OF CO₂

The Sabatier reaction

$$CO_2$$
 + $4H_2 \xrightarrow{catalyst} CH_4$ + $2H_2O$

 $\Delta H_{300-1000^{\circ}C} \cong -170 \frac{kJ}{mol}$

Reduction of carbon, inverted combustion.

- Strongly exothermic
- Thermodynamically favorable ($\Delta G_{298K} = -131 \frac{kJ}{mol}$)
- Significant kinetic limitations, thus require catalyst
- Heavy consumer of hydrogen

SYNERGY WHEN UPGRADING BIOGAS

The methane in the biogas serves as an excellent heat carrier in the reactor.

	Heat per cube (<u>kJ</u>) m ³ K
H ₂ O	1.552
CH ₄	1.483
N ₂	1.212
Ar / He	0.864

$$CH_4 + CO_2 + H_2 \rightarrow CH_4 + H_2O$$
 Adiabatic temperature 0 4 16 4 8 724 °C 6 4 16 10 8 489 °C

EQUILIBRIUM SHIFT?

Having surplus methane affects the reaction equilibrium

$$CO_2 + 4H_2 \xrightarrow{catalyst} CH_4 + 2H_2O$$

Effect of surplus methane is minimal

Reaction yield as simulated in Aspen Plus.

Simulation based on a Gibbs reactor at 300°C and 20 bar.

SYNERGIES BETWEEN SOEC AND SABATIER

BIOSNG PILOT PLANT

BIOSNG PILOT PLANT

AVERAGE GAS COMPOSITIONS

Position	CH ₄	CO ₂	N ₂	H ₂
Biogas	56	43	1	0
Exit 1st stage	94.58	0.27	0.91	4.23
Product gas	97.69	0.00	0.95	1.36

GAS QUALITY

New quality strategy:

- No planned hydrogen surplus
- CO₂ leak accepted
- Significant quality improvement

BioSNG composition from 670 hours of production

VARIATION IN BIOGAS COMPOSITION

Large "natural" variation:

- Feeding reactor 3 times a day
- Clear day/night cycle
- 06:00 CO₂ low
- 18:00 CO₂ high
- Hydrogen demand to follow CO₂

BIOGAS CONTAMINATION

Contamination:

- Nitrogen contamination appear in spikes
- Oxygen contamination seems steady

FINDINGS

- Plant can produce pure bio-methane of pipeline quality.
- It is possible to operate the plant remotely (no operator on site)
- Sabatier reactor shows no sign of catalyst degradation.
- Synergies between SOEC and biogas upgrading has been proven

PHD STUD.

CURRENT PLANT CHALLENGES

Product quality

- Nitrogen contamination in BioSNG is high and close to spec limit.
- Biogas composition changes, requiring constant ratio adjustment

Plant operability

- Grid power failures prevents steady operation of pilot plant (and biogas reactor)
- Water separator on biogas compressor not draining correct
- DMW unit not suited for months of operation

CONCLUSION

Combining SOEC electrolysis with biogas upgrading is an ideal match for a highly efficient energy conversion from power to gas.

The catalytic methanation produces high temperature steam in two ways:

- 1. Steam is formed as a product of the Sabatier reaction, this covers half the SOEC water requirement.
- 2. The catalalytic methanation boiling water reactor produces most of the high pressure steam needed for hydrogen production in the SOEC.

Using biogas as CO₂ source simplifies methanation reactor design

- 1. The methane content already in the biogas results in a lower adiabatic temperature.
- 2. Fewer separate reactors compared to methanation downstream wood or coal gasifiers.

Bio-methane of pipeline quality can be produced from waste CO₂

There is no substitute for hard work. - THOMAS A. EDISON

HYDROGEN DEMAND FOR UPGRADING

Local production of hydrogen is the cheapest solution when bulk volume is needed. High electrical efficiency thru Solid Oxide Electrolysis (SOEC)

UTILIZING WASTE HEAT IN ELECTROLYSIS

From: J. E. O'Brien, Thermodynamic Considerations for Thermal Water Splitting Processes and High Temperature Electrolysis, Proceedings of the 2008 international Mechanical Engineering Congress and Exposition, Boston Massachusetts, USA, 2008

