BIOGAS FOR MARITIME TRANSPORT IN BALTIC SEA, KATTEGAT- SKAGERAK-REGIONS SAMSØ STATUS AND EXPERIENCES

Knud Tybirk, Søren Stensgaard

Samsø Kommune/Samsø Biogas IVS aukt@samsoe.dk

Content

- Intro
- Why do we want Liquefied BioMethane (LBM)?
 - The market now and in the future
- How to make LBM the technologies
 - Biogas OsloFjord, DTU, companies
- The scale economic aspects Can we make a living of it?
- The Samsø Case
 - Status and perspectives

Why Liquefaction of Biogas?

- Biogas has negative GHG emission if manure/waste based!
- Biogas (CNG/LNG) can solve energy needs for Heavy transport virtual pipeline
- Traditional biogas arguments....
- It costs around 10% of energy to liquefy
- Why marine sector? Energy density
- 2,5% of total global GHG emission
- Emission Control Areas
- Paris agreement
 - Reduce GHG emission by 50% in 2050
- RED biofuel blend incentives new market

LNG global market

Figure 6. Share of global LNG exports by country 1990-2016- Source IGU World

Updated 21 March 2016

There are currently 162 confirmed LNG ship fuel projects

Additional orders beyond 2018 are confirmed Updated 21 March 2016

Biogas2020

LNG Report — 2017 Edition

Future Marine fuel scenarios

• Smith et al 2016

http://www.lowcarbonshipping.co.uk/files/ucl_admin/DSA_2016_Co2_emissions_in_shipping.pdf

Steps towards Liquefied Biomethane

The small scale is the major challenge LNG at large scale > 1 mio tonnes annually Global LBM prod is < 50.000 tpa Biogas-> LBM at 1-10.000 tpa Samsø < 3000 tpa LBM

⁻ Together we create a Scandinavian Biogas Platform

Existing Biogas Liquefaction plants

Company/Technology	Country	Biomass source	Annual production of LBM (tonnes)	
Hamworthy/Wärtsila Mixed refrigerant	Norway	waste	3,600	
Hamworthy/Wärtsila Mixed refrigerant	Norway	waste	3,300	
Air Liquide	Sweden	waste	4,900	
Air Liquide	Italy	?	3,100	
Gasrec, Mixed refrigerant	UK	landfill	6,000	
Gasrec, Mixed refrigerant	UK	landfill	5,000	
Linde, Single mixed refrigerant	US	landfill	7,200	
Linde, Single mixed refrigerant	US	landfill	10,000	
Total LBM production			43,100	

The companies delivering

Technology used (short description for non technical personnel) Production Capacity/range [day/year] Site requirements [m²] (footprint of facility) (Range of) production cost pr. [SI unit of facility) (kg./liter/ton/Nm³) O&M Cost Methane slip (Several Project) describe how by avoided) Advantages	Cryo Pur	Wärtsilä (Wärtsilä Puregas Solutions & Wärtsilä Gas Solutions)	Nærene- Da	Norge)	Kosan Crisplant
Technology used (short description for non			CKOGIV		
technical personnel) Production Capacity/range [day/year]		vav: mst			
Site requirements [m²] (footprint of facility)	4	er wan Sam			
(Range of) production cost pr. [SI uping	s uno	HMILL			
(kg./liter/ton/Nm³)	ener	811		ution	
Methane slip (a syle (a) Project			ae w	ie solo	
describe how by Several Naco		hallen	go me li		
avoided) KOSON		the change	eco.		
Advantages Disadvantages		le is the may			
Number of facilities and production	Sca	er why, San gy, HMN, San le is the challen biotickets may b			
capacity installed world wide		pioc			

Samsø - The island of gathering

- 3700 inhabitants, 7x30 kms
- Independent municipality administratively
- Agriculture, grain, pigs and milk
- Vegetables intensive cultures
 - potatoes, onions, cabbage
- Tourism, green energy, gastronomy

Biogas2020

Connections and cooperation

Strands

Aarhus

The Challenges for circular Samsø

- Fossil energy for the ferries
 - To become free of fossil fuels
- Intense agricultural practices
 - Fertilizers, pesticides, water balance, nutrient losses, soil carbon
- Traditional renovation is not circular
 - Incineration of waste, 50% recycling is the demand
 - Alternatives are expensive
- Sewage water into the sea
 - While crops need nutrients and irrigation
- LNG is cheap LBM in micro scale costly
 - Tricky business plan

EUDP Feasibility

Biogas as the engine towards circular economy

SAMSØ

SYLTEFABRIK

The challenges

- Decreasing livestock
- Potatoes, cabbage, onions
- Bread wheat, milk
- Low precipitation
- Low % organic farmers

Input Samsø Biogas:

- 1/3 Slurry
- 1/3 food industry sludge
- 1/3 straw, deep litter, catchcrops etc

The Solution

 Double loop nutrient cycling

- incl. organic

Biogas2020

The Lean Business Model Canvas

Biogas2020

⁻ Together we create a Scandinavian Biogas Platform

Sidebusinesses

- Farmers business
- Samsø Fertilizers
- Samsø Slaugtherhouse
- Future Samsø Trout Farm Aquaculture
- Samsø Gas Methanation or sale of liquid CO₂
- Ferry business/ LBG, CBG, Hybrid
- Samsø Ressource Water Water Symbiosis,
- Circular economy visitor centre
- Tourism, more inhabitants,

Thank you for your attention!

- And welcome to Samsoe! ©
- aukt@samsoe.dk

Biogas2020