

TRANSFORMING BIOGAS
INTO BIO-LNG AND LIQUID CO₂

About Cryo Pur The expert in cryogenic biogas upgrading and liquefaction

- Activity: Supply, installation and maintenance of industrial equipment for the production of liquid biomethane (bio-LNG) and liquid CO₂.
- History:
 - 15 years R&D in the field of cryogenic CO₂ capture.
 - Pilot and demonstration project at a WWTP in France (2015-2017).
 - First commercial unit commissioned in Northern Ireland (10/2017).
 - 3 tenders won in France and Italy.
- Intellectual Property: 7 international patents.
- Team: 28 people, including 20 PhD, engineers and technicians.
- Facilities: Head Office and workshop in Palaiseau, France (Paris area).
- **Equity raised**: € 3 m in 2015, € 6 m in 2017.

Offering new solutions to the biogas sector

- Bio-LNG is a sustainable fuel for trucks, that reduces GHG, NO_x and particle emissions vs. diesel.
- Bio-LNG is stored and transported easily, which enables biomethane projects even when the gas grid is remote or has a limited capacity.

Liquid Bio-CO₂ is an interesting by-product that can be used in various applications: greenhouses, refrigeration in transport, chemical industry...

Cryo Pur Process (1|3)

Cryo Pur Process (2 | 3)

Cryo Pur Process (3 | 3)

Cryo Pur technology benefits (1|2)

- Integrated technology for biogas upgrading, bio-CO₂ liquefaction and biomethane liquefaction
 - Cost efficiency
 - Simplified integration and management of interfaces
 - Performance guarantees
 - Large product range
 - Liquid CO₂ as by-product
- Low electric energy consumption :
 - 0.6 kWh/Nm³ raw biogas for both upgrading and liquefaction: 14 barg/-120°C
 - 0.7 kWh/Nm³ raw biogas for both upgrading and liquefaction: 1 barg/-160°C
- **Heat recovery** on refrigeration systems covering up to 100% AD heating needs
- No methane slip or minimum methane slip for landfill biogas
- **High flexibility** of the system: from 50% to 120% of the nominal biogas flowrate
- Physical separation, no consumables except activated carbon

Cryo Pur technology benefits (2 | 2)

=> Better economics for large-scale bio-LNG projects :

=> Enables small-scale bio-LNG projects.

Reference #1: BioGNVal Project (1|5) Valenton WWTP, France (120 Nm³/h biogas)

Reference #1: BioGNVal Project (2|5) Demonstration project profile

Site location: WWTP rue Louis Armand, Valenton, France (Paris Area).

Biogas source: Sewage sludge.

Biogas composition: CH₄ 60%, CO₂ 39%, H₂S 100 ppm, Siloxanes, VOCs.

Project period: October 2015 - April 2017.

• Capacity:

• Raw biogas flow: 120 Nm³/h biogas.

• Bio-LNG prod.: 1 tpd.

Liquid CO₂ prod.: 1.6 tpd.

Reference #1: BioGNVal Project (3 5) Demonstration project partners

Finance Technical expertise

Owner of Valenton WWTP

Operator of Valenton WWTP and Project coordinator

Design, manufacturing, operation Cryo Pur of the demonstration plant for bio-LNG and bio-CO₂ production

LNG/bio-LNG fueling station provider

LNG/bio-LNG truck provider

Liquid CO2 refrigeration system provider

Reference #1: BioGNVal Project (4|5) Key achievements

Bio-LNG transfer to the mobile transport station

Following demo plant assessment:
Cryo Pur system is eligible to receiving support from ADEME as a proven technology

Use as vehicle fuel

Use as industrial fuel

Reference #1: BioGNVal Project (5|5) Performance validation

- Pilot phase: (10/15-04/16)
 - Validation of Cryo Pur process.
 - Safe operation on Seveso site.
 - Validation of pre-treatment efficiency.
 - Validation of product specifications:
 - 99.7% pure bio-LNG product @ 14 bar(g).
 - 99.99% pure liquid CO₂ product.
 - Key learnings including improvements on H₂S removal process and compressor redundancy.

Online gas analysis:

- Demonstration phase: (12/16-04/17)
 - 24/7 operation during 17 weeks.
 - Automation and remote monitoring system.
 - Validation of system performances.
 - Bio-LNG product @ 4 14 bar(g).
 - Key learnings including improvements on valve design and plant layout.
 - Following demo plant assessment:
 Cryo Pur system is eligible to receiving support from ADEME as a proven technology.

Automated control screen:

Reference #2: Greenville Project (1|5) Northern Ireland (300 Nm³/h biogas)

Reference #2: Greenville Project (2|5) Layout of the industrial unit

Reference #2: Greenville Project (3|5) Equipment delivery

Reference #2: Greenville Project (4|5) Equipment installation

Reference #2: Greenville Project (5|5) Equipment installation

Reference #3: Confidential Angers, France (400 Nm³/h biogas) – 2018

The first integrated system for biogas upgrading, biomethane liquefaction and liquid CO₂ production

- Now commercial.

Cryo Pur solutions:

Cryo Fuel	Production of bio-LNG fuel
Cryo Dist	Production of biomethane from landfill gas
Cryo Haul	Production of liquid biomethane for remote injection
Cryo CO,	Production of gaseous biomethane and liquid bio-CO ₂

Scope of supply:

- Integrated biogas transformation plant.
- Full service agreement incl. remote monitoring.

- Liquid gas storage / transfer station (option).

Product range:

Product		Minimum biogas flow rate (Nm³/h)	Maximum biogas flow rate (Nm³/h)		Nominal production of liquid CO ₂ (t/d)
CP 70	70	35	85	0,7	1,3
CP 150	150	75	180	1,4	2,8
CP 250	250	125	300	2,3	4,7
CP 500	500	250	600	4.7	9,5
CP 800	800	400	960	7,5	15,2
CP 1000	1000	500	1200	9,3	19,0
CP 1500	1500	750	1800	14,0	28,4
CP 2000	2000	1000	2400	18,7	37,9

Delivery schedule:

Thank you for your attention!

www.cryopur.com

Reference #1: BioGNVal Project Incoming biogas specifications

Raw biogas specifications – BioGNVal project:

	Min	Nominal	Max	Unit
Dry biogas flow rate	50	100	120	Nm³/h
Temperature	10	20	37	°C
Pressure	5	20	35	mbar(g)
Dew point	10	20	37	°C
Dry biogas composition	Min	Nominal	Max	Unit
CH ₄	60	63	70	% vol
CO ₂	30	35	40	% vol
N_2		2 ± 0.1		% vol
O_2		0.43 ± 0.05		% vol
H ₂ S	10	30	150	ppm vol
NH ₃	-	-	-	ppm vol
VOC	-	4,8	-	mg/m³
Siloxanes	-	7	-	mg/m³
H ₂	46	65	79	ppm
CO	-	-	-	ppm vol

Scope of supply

